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ABSTRACT Innovative solutions and developments are being inspected to tackle rising electrical power
demand to be supplied by clean forms of energy. The integration of renewable energy generations,
varying nature loads, importance of active role of distribution system and consumer participation in grid
operation has changed the landscape of classical power grids. Implementation of smarter applications to
plan, monitor, operate the grid safely are deemed paramount for efficient, secure and reliable functioning
of grid. These smarter applications for modern power systems demand capabilities such as real-time
monitoring, dynamic security analysis, stochastic power flow calculations, large-scale data analytics, and
high-dimensional combinatorial and constrained optimization. Although sophisticated computations to
process gigantic volume of data to produce useful information in a time critical manner is the paradigm of
future grid operations, these enhanced functionalities impose significantly higher computational demands
compared to traditional approaches used in conventional power systems. Advancements in quantum
technologies holds promising solution for dealing with demanding computational complexity of power
system related applications. In this article, we lay out clear motivations for seeking quantum solutions for
solving computational burden challenges associated with power system applications. Next, we present the
fundamental principles of quantum computing, introduce key quantum algorithms, and offer a comparison of
the computational load between classical and quantum approaches for few important mathematical problems,
indicating their relevance to various power system applications. Additionally, we provide an overview of
quantum solutions for various power system related applications available in current literature and suggest
future topics for research. We further highlight challenges with existing quantum solutions for exploiting full
quantum capabilities. To this end, this article serves as a bridge for power engineers to the quantum domain
by outlining fundamental principles of quantum computation, facilitating a smoother transition to the future
of power system computations and also provides quantum experts with insights into new application areas
for quantum computing within power systems.

INDEX TERMS Power system, quantum computation, quantum technologies, computational complexity.

I. INTRODUCTION In order to support this growing demand, power sector is
Electrification of sectors such as mobility and heating taking many steps such as inclusion of additional generation
has led to an increase in demand on today’s power grid. resources, expansion of grid infrastructure, strengthening

infrastructure of information and communication technology
The associate editor coordinating the review of this manuscript and (ICT), 1nn0va}t10n in smarter grid 0perat10na1. golutlons and
approving it for publication was Yifan Zhou. exchange of immense volume of data for efficient and safe

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
VOLUME 12, 2024 For more information, see https://creativecommons.org/licenses/by/4.0/ 182673


https://orcid.org/0009-0007-1862-3520
https://orcid.org/0000-0002-4628-6951
https://orcid.org/0000-0001-7056-7545
https://orcid.org/0000-0001-8745-5021
https://orcid.org/0000-0003-1914-9801

IEEE Access

P. A. Ganeshamurthy et al.: Next Generation Power System Planning and Operation

operation of the grid. Handling and processing enormous
volume of data using sophisticated algorithms within the
speed which is dictated by the specific application can be
computationally expensive on today’s processors. In recent
years there has been increasing efforts from both industries
and research institutions to explore Quantum solutions for
power system applications to address this challenge [1], [2],
[3]. To this end, this paper aims to serve as a bridge for power
engineers to the quantum domain by adequately outlining
fundamental principles of quantum and highlighting the
need for research in this direction followed by providing
comprehensive outlook on existing quantum solutions and
algorithms for applications used in planning and operation of
power systems as well as suggesting it’s quantum readiness
level. Moreover it provides quantum experts with insights into
new application areas for quantum computing within power
systems.

The main contributions of this paper are:

« to outline clear motivations for continuing research on
quantum solutions for power system applications,

e to present an overview of current research on
quantum-solutions for different power system, applica-
tions and suggest quantum readiness level

« tooutline challenges in exploiting full quantum potential
specifically for power system applications,

o to present quantum fundamentals essential for devel-
oping a quantum algorithms, key quantum algorithms,
a comparison of the computational load between
classical and quantum approaches for few important
mathematical problems

« toidentify potential applications which can benefit from
quantum computations

Intended audience of the paper are (but not restricted to)

power system engineers and quantum specialists. For power
system engineers this paper serves three purposes. Firstly,
to drive attention of power engineers and motivate for investi-
gating quantum solutions to address emerging computational
challenges of various complex power system applications.
Second, to present quantum approaches investigated for
power system related applications in current literature. Third,
to provide fundamental concepts of quantum computation
and right references for further information, in an effort to
build the gap of quantum knowledge. On the other hand,
quantum specialists may benefit to understand the technical
and computational challenges associated with various power
system applications and thereby demanding their attention to
investigate power system specific quantum solutions.

Il. WHY QUANTUM COMPUTION FOR FUTURE POWER
SYSTEM APPLICATIONS

To address the increasing need for decarbonization for
environment sustainability, the energy sector is moving at
a fast pace towards the use of decentralized and renewable
energy resource for electricity production [4]. Further, with
increase in energy demand, integration of new types of loads
coupled with variability and intermittent nature of generation
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and loads is transforming not only the dynamics of power
system, but also increasing the complexity of applications
required to support the modern power network.

Increased integration of renewable based generation has
also motivated phasing out of conventional fossil-fuel based
generation. The conventional generators such as synchronous
machines have rotating masses that introduce sufficient iner-
tia to the system, which is crucial for the stability of the power
system. On contrary, the renewable sources are integrated to
the grid through power electronics based converters, which
does not introduce inertia to the system. Therefore, in grids
with high proportions of renewable resources integration,
the grid experiences faster rate dynamics due to low-inertia
of power system. This demands faster execution of power
system applications to support real-time grid monitoring,
operation and control. Moreover, the volume of data needed
for effective monitoring and optimized operation of modern
grid has increased tremendously. The planning and operation
of modern day power system thus faces several chal-
lenges owing to variability and intermittency of renewable
energy resources, bi-directional power flows, higher time-
scale dynamics, increased non-linearity, and optimization
complexity, to name a few. The modern power system
applications thus demand capabilities such as real-time
monitoring, dynamic security analysis, stochastic power flow
calculations, large-scale data analytics, and high-dimensional
combinatorial and constrained optimization, which places
immense pressure on computational resources. Therefore,
today’s processors for power system applications are faced
with the challenge to process huge amount of data and process
complex computation in close to real-time.

The main computational challenge for most power system
applications stem from:

« increase in number of variables due to expanding grid
size! and grid components,

« complexity in executing algorithms corresponding to
mathematical formulation of problems,

« handling volume of data needed to perform the compu-
tation and generated by the computation,

o frequency with which computation needs to be
performed,

o and speed with which computation outcomes are
desired.

As highlighted above, in addition to the complexity
involved in executing algorithms corresponding to the
mathematical formulation of the problem, further challenges
arise due to functional requirements such as the need
for multiple runs, expanded search space, processing of
large amount of data or the demand for near real time
execution. Table 1 provides an indication of these source

1Although the operation and control of the grid takes place region wise,
when the medium and low-voltage section of the grid is to be included,
then the number of variables to be computed and number of resources to be
considered for the monitoring, operation, control and optimization problem
increases.
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TABLE 1. Indication on power system applications computation
complexity.

Power System Sub-Category Computation
Application Complexity
Grid Situational ~ Static States Estimation MR
Awareness Dynamic States Estimation MR, RT
Parameter estimation MR
Observability Analysis MR
Meter Placement (6]
Power flow -
Grid Security Contingency Analysis MR
Cyber Security -
Reliability Analysis MR
Optimization Unit commitment O, MR
Economic power dispatch 0, MR
Facility location allocation (6]
Volt/Var control O, MR
Forecasting ‘Weather forecast MR
Generation forecast MR
Load forecast MR
Electricity price forecast MR, RT
Grid Stability Small signal Analysis MR
Transient Analysis MR
EMTP MR
Fault Detection RT
Grid Control Load frequency control O, MR, RT
DFIG rotor control O, MR, RT

MR  Multiple execution runs
RT Faster or close to real-time execution desired
(0] Combinatorial and/or constrained optimization

of functional computational complexity for different power
system application categories.

Classical computing methods, while foundational to tradi-
tional power system operations, can face several limitations
as the complexity of modern grids increases. One key
shortcoming is the inability of classical computers to
scale efficiently with the growing computational demands.
According to Moore’s Law, the number of transistors on a
chip, and thus processing power (measured in floating point
operations per second), has historically doubled approxi-
mately every two years. However, this trend is slowing down
as physical and technical limits of classical hardware are
being reached, leading to diminishing returns in processing
improvements [5]. This slowing progress, combined with
the rapidly increasing size and complexity of power grids
driven by renewable energy integration, means that classical
computers are struggling to keep up with real-time decision-
making and optimization tasks in modern power systems.
Additionally, classical algorithms for optimization and power
flow calculations, such as mixed-integer programming and
non-linear solvers, become computationally inefficient for
large, distributed grids. These methods typically require a
sequential approach, which is time-consuming and inade-
quate for handling the uncertainties introduced by renewable
energy sources. Classical computers are also challenged by
the probabilistic nature of modern grid operations, as they
rely on deterministic models that do not account for the
variability and unpredictability inherent in renewable energy
generation and fluctuating loads. The vast amounts of data
generated by smart meters, sensors, and [oT devices in smart
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grids further exacerbate the issue, as classical methods lack
the parallel processing capabilities required for real-time
data analytics and optimization at scale. Moreover execution
of computationally burdened power system applications on
classical computers is often faced with the trade-off between
execution speed and outcome accuracy. Generally in order
to gain higher execution speed, the problem formulations
are adapted with certain approximations in order to simplify
the complexity of the problem, which leads to lower
accuracy. One obvious solution could be developing classical
computers with much higher processing power, such as
Tianhe-2 supercomputer. However, these supercomputers
demands extraordinary level of energy consumption [2], [6].

An alternative possible solution to this lies in another
important technology which has gained traction in recent
years, that is, the Quantum computing. Quantum computing,
with its unique characteristics from quantum mechanics,
offers potential solutions to these computational challenges.
Quantum systems leverage principles like superposition and
entanglement, allowing them to process multiple possibilities
simultaneously, making them ideal for solving large-scale,
high-dimensional optimization problems quickly. Quantum
algorithms, such as quantum annealing and Grover’s search,
can efficiently navigate vast solution spaces and address
uncertainty, providing better tools for managing the stochas-
tic nature of renewable energy and dynamic grid opera-
tions. Additionally, quantum computing’s ability to handle
complex, nonlinear optimization problems and large-scale
data sets promises to revolutionize real-time decision-
making, power flow optimization, and predictive analytics.
As quantum computing technology matures, it holds the
potential to meet the future computational demands of
evolving power systems more effectively than classical
methods. The increase in number of Qubits, reduction in
noise and formulation of critical algorithms are paving way
for improved execution of existing engineering applications
with Quantum computation. As an example, Fig. 1 shows
development roadmap of IBM Quantum technology [7] over
the years. Quantum computing is capable of administering
large data sets at much faster speeds, thereby rising as a
promising solution to the problem of computational burden
of power system applications. Moreover, quantum computers
promises use of significantly less power than a classical
computer as speculated in [8] and [9].

While Quantum computation is a promising solution,
encoding of information into a Quantum computer and
processing of quantum information is very different in
comparison to its classical counterpart. Quantum computing
adoption therefore poses two-fold challenge. First to train
power sector engineers with specialized skill for quantum
computation with a clear understanding of the technol-
ogy’s capabilities and limitations. Second to build quantum
algorithms and proof-of-concepts addressing various power
system applications. This will not only ensure a smoother
transition to the future grid system, but also enable the power
community to be future-ready.
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FIGURE 1. IBM Quantum development roadmap [7].

With this background, the main motivation for exploring
the quantum solutions for power system applications are the
following:

« Capability to handle and process huge volume of data

o Capability for real-time execution of required

applications

« Possible solution for gaining computation speed without

compromising on accuracy

« Decrease computation-driven carbon footprint

o Develop new algorithms addressing power system

applications, enabling future-preparedness

o Train power engineers with appropriate Quantum com-

putation related skill sets, enabling smoother transition

Ill. QUANTUM COMPUTATION FUNDAMENTALS
Quantum computation is an interdisciplinary branch of
physics and computer science which approaches different
computational problems using quantum-mechanics, for e.g.
entanglement and superposition [10]. Quantum information
and quantum computing is a center of attention in last few
decades due to its ability to outperform classical computation
and information processing, because the quantum algorithms
can provide significant speedups over their classical counter-
parts. Many known quantum algorithms have various applica-
tion, such as: search algorithm [11], integer factorization [12],
solving constraint satisfaction problems [13], and quantum
machine learning [14], [15], [16]. In this section, a brief
summary about basic terminologies and concepts used in
quantum computation are outlined.

A. QUANTUM STATE, QUBIT, AND IT'S REPRESENTATION
A quantum state is any possible state in which a quantum
mechanical system can be. A fully specified quantum state
can be described by a state vector, a wavefunction, or a
complete set of quantum numbers for a specific system.
A partially known quantum state can be described by a
density matrix (or density operator) [10].

There exists a visual representation of a qubit state called
Bloch sphere representation. Suppose we want to plot our
general one qubit state:

lor) = cos §10) + ¢ sin §|1). (1)

If we interpret 6 and ¢ as spherical co-ordinates (r = 1, since
the magnitude of the qubit state is 1), we can plot any single
qubit state on the surface of a sphere, known as the Bloch
sphere. In Fig. 2, we have plotted a qubit in the state |[+) =
%m) + \/LQ|1>. In this case, § = /2 and ¢ = 0.
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FIGURE 2. Representation of the |+) state in Bloch sphere.

B. SYSTEM OF QUBITS
A joint state of multiple qubits can be described using tensor

product. For e.g. from two one qubit states |a):(a0) and |8)=
o
(go) we can build a two qubit state:
1

leB) = o) ® [B)
= apfo |00) + o 01) + a1 Bo [10) + ey By |11} .
2

However a generic two-qubit state can be written as

[¥) = v00 100) + yo1 101) + y10 [10) + 11 [11) . (3)

For a system of n qubits, the number of basis vectors
is 2". Therefore, the dimension of the state space grows
exponentially (2") with the number of qubits 7.

The most important properties of Qubits are the superpo-
sition and entanglement of states, allowing the execution of
exponentially many computations in parallel.

1) SUPERPOSITION

In quantum mechanics superposition is the property of a
quantum system to be in a multiple states at the same time.
This means that with n qubits, one can operate on 2" numbers
simultaneously.

Translation to Quantum Computation: With regards to
qubits manipulation, superposition refers to the fact that any
linear combination of two quantum states, once normalized,
will also be a valid quantum state. In other words, any
quantum state can be expressed as a linear combination of
a few basis states [17]. For e.g., in Eq.(3), |y) represents a
generic two qubit state with a linear superposition of the four
two-qubit basis states.

2) ENTANGLEMENT
In quantum mechanics, for certain pairs of particles, irre-
spective of the position of particles in space, the state of
one particle is complementary to the state of the other,
and therefore have quantum states that are linked together.
The coupling of atomic particles in this way is known as
entanglement.

Translation to quantum computation: States of a system
which cannot be expressed as a tensor product of states of
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its individual subsystems are called entangled states. For a
system of n qubits, this means that an entalged state cannot be
written a tensor product of n single qubit states. For instance,
for system of two qubits, the state 1004111 g an entangled
state, as this state cannot be written as tensor product of two
single qubit state [18].

C. OBSERVABLE AND MEASUREMENT

Beside qubits, the two important concepts of quantum
mechanics are observable and measurement which is essen-
tial for quantum computing.

1) OBSERVABLE

In quantum mechanics, an observable is a physical quantity
that can be measured, e.g., position, momentum, or energy.
In classical mechanics, it is a real-valued function on the
set of all possible system states. In quantum physics, it is
an operator, usually represented by a unitary matrix, where
the property of the quantum state can be determined by some
sequence of operations, e.g., energy of a quantum system is
represented by Hamiltonian operator.

2) MEASUREMENT

Measurement is a non unitary operation after which a generic
quantum state collapsed into one of its basis states; therefore
measurement outcomes are probabilistic. For example, after a
measurement, the one-qubit state |«) in (1) will collapse into
either |0)-state with a probability of |a0|2 or |1)-state with a
probability of |o |2, with a condition |ag|? + |12 = 1.

D. QUANTUM HARDWARE AND SOFTWARE

1) BASIC UNIT OF INFORMATION

The fundamental difference between classical computer and
quantum computer is the basic unit of data used for pro-
cessing of information. In classical computer, the basic unit
of data is represented by a bit, which can deterministically
assume only one of two possible values/states, that is 0 or 1.
Classical computers work by converting information to a
series of these bits and process data by manipulating these
bits. The classical computers make use of logic gates to
perform any operation.

In quantum computers, the basic unit of data is given by a
qubit, which can assume O or 1 or any state in between in a
probabilistic manner. Currently there exist two main types of
quantum computer, quantum annealer and universal quantum
computer.

2) TYPES OF QUANTUM COMPUTERS

a: QUANTUM ANNEALER

The quantum annealer frames the computational task as an
energy minimization problem. Quantum annealers are used
for optimization problems; an example is D-Wave quantum
annealer. Ising machines [19] are hardware solvers (a more
generic version of the quantum annealer) which tries to
find an absolute or approximate ground state of the Ising
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model. The Ising machines use three main types of computing
methods, namely, classical annealing, quantum annealing and
dynamical system evolution. The main limitation of the Ising
machine is it’s performance is problem-dependent.

b: UNIVERSAL QUANTUM COMPUTER

This category of quantum computers implement and compute
algorithms with universal quantum gates, analogously to the
use of Boolean gates in classical computers. In classical
computation the OR, AND, and NOT are the three basic logic
gates are called universal gates as they together can construct
the logic circuit for any given Boolean expression. Similarly a
set of universal quantum gates is any set of gates to which any
operation possible on a quantum computer can be reduced,
that is, any other unitary operation can be expressed as a finite
sequence of gates from the set. For example, Hadamard (H),
CNOT, and Phase gates form a set of universal set of quantum
gates. This can be used as general purpose; an example is IBM
Quantum machines.

The main difference between universal quantum computer
and quantum annealer is its applicability. Quantum annealers
can be used for a specific purpose of finding an optima,
therefore its sole purpose is optimization. On the other hand
the universal quantum computer can be used for universal
purpose like a regular computer.

3) QUANTUM SIMULATORS

Since the real quantum hardware consume too much
resources for prototyping purpose high performance quantum
simulators are used. The corresponding software is called
Qiskit which is a like a python wrapper for simulating
quantum algorithms. In the following few of the examples
from IBM quantum simulators are presented.

a: AERSIMULATOR AND QASMSIMULATOR

With these simulators we can automatically mimic an IBM
Quantum backend (real hardware). With this simulator we
can configure the same basis gates, coupling map, and basic
noise model for that specific backend.

b: STATEVECTORSIMULATOR AND UNITARYSIMULATOR
This simulators operate computing actual state vectors (for
quantum states) and unitary matrices (for operators) for an
ideal quantum circuit simulation using local CPU or GPU.

E. STEPS IN BUILDING QUANTUM ALGORITHM
There are three main steps for building a generic quantum
algorithm.

o Quantum information encoding: The first step is loading
the classical data in a quantum computer. While efficient
data encoding is still an open problem but few popular
examples for data encoding are:

(1) The first one is the gRAM, namely a quantum
version of the random access memory (RAM) [20].
From a theoretical perspective, it can be described as
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a quantum operator allowing efficient (i.e., quantum-
parallel) access to classically stored information. Unfor-
tunately though such a device was never built at scale.
(2) The second approach is preparing the desired quan-
tum state directly with controlled rotation gates [21],
[22], [23], [24], [25], [26], [27]. The main challenges
for an efficient encoding in this method is optimizing the
trade off between the circuit-depth and circuit-width.
(3) The third approach resorts to gGAN, a quantum
version of Generative adversarial network (GAN) [28],
[29], [30] etc. Out of different encoding, qGAN encod-
ing stands out due to its qubit-efficiency and its capacity
to be prepared in a polynomial number of gates using
qGANSs. This is a popular choice where parametrised
quantum circuit with parameter 0 to generate the n-qubit
quantum state

2"—1

WOy = D VpiO) lidy “
i=0

where |i), are the basis vectors and +/p;(@) are the
corresponding amplitude. In a qGAN the classical
generator or discriminator or both can be a parametric
quantum circuit.

o Quantum information processing: After the data loading
the second step is to implement the actual algorithm, for
e.g., Grover [11] or Shor [12] algorithm.

o Quantum information decoding: After the quantum
computation the third step is to extract the useful
information from the quantum computer. We get a
normalized vector (or quantum state) after the quantum
simulation, therefore, we have to post processing for
getting the actual unscaled result.

Readers curious to gain more fundamental knowledge and
hands-on experience on quantum computation may refer
to IBM’s extensive documentation and learning platform
on [31] and [32]. Quantum algorithms can be implemented
by building a circuit in IBM composer [33] or by writing lines
of code using the Qiskit package [34].

F. INTRODUCTION TO QUANTUM ALGORITHMS
In this section we describe a few popular quantum algorithms
for potential power system applications.

1) THE HARROW-HASSIDIM-LLOYD (HHL) ALGORITHM

Systems of linear equations are building block of many
many real-life applications, such as solving Partial Differ-
ential Equations, the calibration of financial models, fluid
simulation etc. The Harrow-Hassidim-Lloyd (HHL) [35] is
well known quantum algorithm which can achieve significant
speedup over corresponding classical algorithms. A system
of linear equation can be defined as follows, given a matrix
A e CN*N and a vector b € CN, we have to find a
X € CN satisfying A¥ = b. For a given Linear system
having a condition number «, solving an s-sparse system of
size N with a classical computer requires O (N 3sic log(1/ 6))
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running time using the conjugate gradient method. Here,
€ denotes the accuracy of the approximation. The compu-
tational complexity of HHL algorithm is O (10g(N )s2i2) e),
therefore for a sparse matrix HHL provides upto exponential
speedup over it’s classical counterpart. The algorithm uses
three quantum registers, all of them set to |0) at the beginning
of the algorithm. The first register, which is denoted with the
subindex 7y, is used to store a binary representation of the
eigenvalues of A. A second register, denoted by 7y, contains
the vector solution with N = 2. There is an extra register
for the auxiliary qubits. These are qubits used as intermediate
steps in the individual computations but will be ignored in the
following description since they are set to |0) at the beginning
of each computation and restored back to the |0) state at the
end of the individual operation.

In Fig.3, a schematic diagram for HHL algorithm is
presented.

r--r—-r———~~~>"~>""~>"~>">"">"~>""~>">"777 a
| |
10) | HA
| |
o) A | Eigenvalue inversion —
| |
0) = 1 QPE — QPE' [+
Q
Load |b) : : F(x)
[0) - I e I Iy

Repeat until success

FIGURE 3. A schematic diagram for HHL algorithm.

1. Load the data |b)
transformation

€ CN. That is, perform the

[0, > 1)y,
2. Apply Quantum Phase Estimation (QPE) with

N—1
At . At
U= = E "' uy) (uj].
J=0

The quantum state of the register expressed in the eigenbasis
of A is now

N—-1
> bilA I 4,
j=0

where [A;),, is the n;-bit binary representation of 2.
3. Add an auxiliary qubit and apply a rotation conditioned
on |A;),

p c? c

> bilam e, 1= 510y + =I1)
, 22 A
=0 J

where C is a normalisation constant, and, as expressed in
the current form above, should be less than the smallest
eigenvalue A, in magnitude, i.e., |C| < Apin-

4. Apply QPE'. Ignoring possible errors from QPE, this
results in

N-—1
/ C? C
E bj|0>n1|uj>nb( 1— _2|0> + _|1))
‘ % Aj
J=0 J
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5. Measure the auxiliary qubit in the computational basis.
If the outcome is 1, the register is in the post-measurement
Sstate

N-1

1 b;
5 | 22 7 0w,

o' 1B/ Wl ) =5 %

which up to a normalisation factor corresponds to the
solution.
6. Apply an observable M to calculate F(x) :=

(x|M|x).

a: QUANTUM PHASE ESTIMATION (QPE) WITHIN HHL
Quantum phase estimation [36] is the core quantum subrou-
tine in the HHL algorithm. Roughly speaking for given a
unitary U with eigenvector |/),, and eigenvalue ¢*** | QPE
finds 6.

More generally let U € C?"*?" pe a unitary matrix and
let [¥/), € C2" be one of its eigenvectors with respective
eigenvalue ¢>". The QPE algorithm takes as inputs the
unitary gate for U and the state |0),|y),, and returns the state
16) %) m. Here 6 denotes a binary approximation to 2"6 and
the n subscript denotes it has been truncated to n digits.

QPE (U, [0)u]¥)m) = 10)l V) m.

For the HHL we use QPE with U = ¢!, where A is the
matrix associated to the system we want to solve. In this case,

N-1
A= ) (.
Jj=0

Then, for the eigegvector [14j) 1y, » whic~h has eigenvalue e
QPE will output |A;)y, |u;),,. Where A; represents an n;-bit

i)\.jt
b

binary approximation to 2" 5 '\’ . Therefore, if each A; can be

exactly represented with n; b1ts

N-1

QPE ( €™, > bjl0)n [},

j=0

Zb |)L n1|u] np-

2) QUANTUM ANNEALING

Much of the work on quantum computing focuses on gated
quantum computers. The alternative is a quantum anneal-
ing computing system. The quantum annealing computing
approach was put forward in several publications [37], [38],
and there are two recent reviews detailing the quantum
annealing computing approach [39], [40]. The quantum
annealing computing approach has been shown to be equiv-
alent to the gated quantum computing approach [41]. The
reason the quantum annealing computing approach is exciting
can be understood from understanding three complexity
classes. In computational complexity theory the class QMA
(Quantum Merlin Arthur) is the quantum analogue of the
complexity class NP. The relation between these three
complexity classes are P € NP C QMA. The question of
whether P = NP or P C NP (so P # NP) is one of the
Clay Millennium mathematical problems. If P # NP, then
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in terms of the implications of complexity classes, a quantum
annealing computing system can solve problems no classical
computer can solve. Two subclasses of complexity classes are
those of NP-complete and QMA-complete. An NP-complete
problem can be verified quickly on a classical computer
to be a valid solution, but there is no known fast solution
(if P # NP) to find a solution. Furthermore, if you can
solve one NP-complete problem, in essence you have the
ability to solve any problem in the NP-complete subclass.
Quantum annealing computing systems are build to find
solutions in NP-complete. QMA-complete problems have a
similar relation to QMA problems as NP-complete problems
have to NP problems. It has been shown theoretically that
quantum annealing computing machines can solve problems
which are QMA-complete [42]. The only company selling a
quantum annealing computing machine is D-Wave.

The hamiltonian for a D-Wave system of qubits is an Ising
type Hamiltonin and can be represented as:

O3 00) + B(S>(zh,z+zJ-a;ag),

i (i>))

Hlsing =

)
where o)g)z are Pauli matrices operating on qubit ¢;, and
h; and J;; are the qubit biases and coupling strengths. s is
called the anneal fraction. A(s) and B(s) are known as anneal
functions. At s = 0, A(s) > B(s), while A(s) < B(s)
for s = 1. As we increase s from O to 1, anneal functions
change gradually to meet these boundary conditions. In the
standard quantum annealing protocol, s changes from O to 1.
The network of qubits starts in a global superposition over
all possible classical states and after s = 1, the system is
measured in a single classical state.

The arrangement of qubits on the D-Wave chip forms a C16
Chimera graph: 2048 qubits are mapped into a 16 x 16 matrix
of unit cells each of 8 qubits. Figure 4 shows a sample
Chimera architecture for D-Wave 2000Q QPU. More recent
and advanced D-Wave QPUs use Pegasus and Zephyr chip
topologies.

3) VARIATIONAL QUANTUM EIGENSOLVER AND QUANTUM
APPROXIMATE OPTIMIZATION ALGORITHM

The Quantum Approximate Optimization Algorithm (QAOA)
[43] is an well known quantum algorithm for solving
combinatorial optimization problems on NISQ devices [44].
This is an gate based alternative for Quantum Annealing.
The QAOA implementation directly based on a quantum
algorithm called Variational Quantum Eigensolver (VQE)
[45], [46]. Being a hybrid quantum-classical algorithm,
VQE uses the QPU for state preparation and measurement
subroutines, and the classical computer to post-process the
measurement results and update the parametrized VQE
ansatz to find the lowest energy configuration of a given
Hamiltonian. VQE wuses the variational principle, first

preparing a parametrized quantum state ’\II(G)> and then
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FIGURE 4. A C3 Chimera graph, denoted C3. Qubits are arranged in a grid
of 3 x 3 unit cells unit cells (image source: D-Wave Ocean Software).

trying to find the optimal set of parameters 6%, according to
the following objective

min (W(@)|H | W (@) = Eo, ©)

where, Ep denotes the exact lowest energy eigenvalue of
the Hamiltonian H. For more than 50 qubits classical
computers are unable to efficiently prepare, store and
measure the quantum state, we use the quantum computer
for this subroutine. Then we use the classical computer to
iteratively update the parameters using some optimization
algorithm [47], [48]. In Fig. 5, we describe a simple workflow
of the VQE algorithm.

@
Optimizer
Compute Energy Choose parameters fgr trial state
E=(p|H|¥) [(8)) = U (8)|0)
- N
Quantum
Processor

FIGURE 5. A sample VQE flowchart.

The QAOA inherits VQE’s optimization structure, how-
ever, unlike VQE, which can be configured with arbitrary
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ansatzes, QAOA uses its own fine-tuned ansatz and a problem
Hamiltonian H,.. The ansatz is prepared by applying the
quantum operators exp{—iyxHc} and exp{—iBiH;,} with
angles yi,...,yp and Bi,..., B, on the [0), quantum
state. The quantum circuit is parametrized by y; and S;.
Then we apply VQE to obtain the lowest energy state of
the problem Hamiltonian H,. with optimized parameters
Y and Bf. We measure the final state, which is a linear
combination of the corresponding basis states. The solution
for the optimization problem is described by the basis state
with the highest probability.

4) QUANTUM AMPLITUDE ESTIMATION
Quantum Amplitude Estimation (QAE) [49], [50] is a popular
quantum algorithm, which achieves a quadratic speedup over
classical Monte Carlo (MC) simulation and has wide range
of application in financial services for the purpose of option
pricing [51] and risk analysis in finance [52] and also in
the energy sector [53]. The canonical version of QAE is a
combination of Quantum Phase Estimation (QPE) [36] and
Grover’s Algorithm [11].

The workflow of the QAE is as follows. Suppose a
quantum operator A acts on an (n + 1)-qubit state |0),,, | and
produces the following state

Al0)yp1 = V1 =al$0),10) +Valy), [1). (D)

Then the QAE approximates the amplitude a in the above
equation (7), with an estimate a. The error satisfies |a — a| =
OM~"), where M is the number of applications of A,
with probability of at least 8/7% [50]. This was first been
investigated by Brassard et al. [49] and later Grinko et al.
[54], which uses a combination of the Grover operator Q =
AS)ATSy,, where Sy = T — 2|0),41(0ls41, and Sy, =
I — 2|Wo)(Wo| ® |0)(0|. The algorithm then extends to any
desired confidence level. Therefore a quadratic speed up in
the convergence rate is obtained, compared to classical Monte
Carlo methods, for which the error is O(M ~/2), where M is
the number of Monte Carlo simulations this time.

The idea of QAE and variants, is based on the possibility
to construct a Grover operator Q based on A, whose eigen-
vectors are related to the desired value a by a trigonometric
relationship. Afterwards, the Quantum Phase Estimation is
applied to efficiently retrieve the (cosine of) the eigenvalues,
and therefore a. Recently a variant of QAE using dynamic
circuits called Dynamic Amplitude Estimation (DAE) [53] is
introduced for energy portfolio risk analysis.

IV. APPLICATION OF QUANTUM COMPUTING FOR
POWER GRIDS

In this section, we review existing Quantum proof-of-concept
implementations of crucial functions for power system
management and safe operation.

A. GRID SITUATIONAL AWARENESS
Situational awareness of the grid is extremely important for
the grid operators in order to be able to operate the grid in
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TABLE 2. Common quantum algorithms and their comparison of computational complexity to classical computation.

Problem category Example Power System Classical computation Quantum Quantum computation
Application complexity algorithm complexity (speed-up)
Solving linear system of equations Power flow, state estimation polynomial HHL exponential
Combinatorial and/or optimization Meter placement, unit commitment exponential QA polynomial or exponential
Estimating probability distributions Reliability assessment O(e%), given precision e QAE Quadratic O(%)
Regression, clustering, classification Forecasting polynomial QML polynomial or exponential

reliable and safe manner. The state of the grid is monitored
using the live measurement data from the field and historical
data on the load and generations. The grid state monitoring
using weighted least squares technique is a common approach
followed in the transmission grid operations. In recent years,
distribution grid monitoring is equally gaining importance
due to the transformation of distribution grid from once
passive to now active grid. In this sub-section, we review few
sub-routines that are used to support the monitoring of power
system and their corresponding quantum-enabled approaches
proposed in literature:

1) STATIC STATES ESTIMATION

State estimation routine is one of the most critical routine in
the control center, as its results are further utilized in other
energy management system routines such as optimal power
flow, contingency analysis to name a few.

States estimation involves the problem of estimating the
quantities of the grid, with whose knowledge the complete
state of the grid can be known. The most common selection
of states is the voltage magnitude and phase angles. For a grid
with n buses, 2n — 1 states needs to be computed. Therefore,
the problem scales in complexity with size of the grid.

Static state estimation is a category of state estimation,
where the state of system at time instant 7 is estimated using
measurements at time ¢, and does not depend on the state of
the grid at + — 1. One of the most popular formulation of
static state estimation problem is based on Weighted Least
Squares (WLS) method, where the objective is to minimize
square of the measurement residuals, as given in (8). Owing
to the non-linear nature of the problem formulation, the
method involves Gauss-newton iterations to compute the
states, as shown in (9).

g(x) = —H"(x)W[z — h(x)] = 0 ®)
80x+1) = glxx) + GOxx)Cex+1 — xx) =0
Gx).Ax = —HT ()W [z — h(x)] o)

Computationally intensive steps in WLS method include
calculation of Jacobian matrix H(x) and the inversion of
the Gain matrix G(x) = H(x)" WH(x) in each iteration
of the method. In case of transmission grid, the fast
decoupled method can be used which involves making
certain assumptions, which avoids calculation of Jacobian
and inversion of Gain matrix in each iteration, and there-
fore reducing the computational burden. However, such
assumptions do not hold true in case of the distribution
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grids, and therefore the problem remains computationally
challenging. Further adding to the complexity of the problem
is the unbalanced nature of distribution grid, which calls
for estimation of states for all three-phases. In addition,
the distribution grids contains a larger number of buses
in comparison to the transmission grid. These challenges
today’s available computers capability to compute states
estimation for growing distribution grids of future. Recent
research in [55] investigates Quantum algorithms to solve
WLS method. The method proposes Harrow-Hassidim-
Lloyd (HHL)-enabled Quantum implementation of WLS
for microgrids. Further, to deal with ill-conditioned gain
matrix, Authors of [55] present preconditioned quantum
linear solver. The presented methods provide a firm basis
and reveals the potential of quantum computing in microgrid
state estimation, however due to the fact that current quantum
computers still have limitations regarding the quantum depth,
coherence time, and noise tolerance capability, the presented
investigation is limited to a small size of microgrid. Quantum
assisted AC three-phase distribution grid state estimation, and
hybrid AC-DC states estimation may be considered for future
investigations.

2) DYNAMIC STATES ESTIMATION

Dynamic state estimation (DSE) tracks the dynamics of
power system states and provides evolution of the system
state with time. Computation of states using dynamic state
estimation method at time ¢ depends not only on the
measurements at ¢, but also on the states at time ¢ — 1 and
therefore gives a picture of evolution of state of the grid.
Widely used classes of methods for dynamic state estimation
is based on Kalman Filtering techniques, including extended
kalamn filter and unscented kalman filters. A kalman filter
uses a series of measurements over time to produce estimates
of unknown variables based on a dynamic model. Recent
IEEE Task force efforts [56], [57] has highlighted the
importance of dynamic states estimation for the emerging
grid conditions and for applications ranging from monitoring,
operation, control, protection and planning. The majority of
DSE designs recursively compute gains K, as given by (10);
this involves matrix multiplications and inversions at each
time-step. DSE need to be supported by adequate computing
resources to achieve practical and acceptable performance in
real-time [58].

K = PHT(HPHT + R)™! (10)
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The use of Quantum computing for dynamic state
estimation raises naturally as an attractive solution. For
a quantum system, the stochastic filter is provided by a
quantum filter, which is also known as a stochastic master
equation (SME). For a linear quantum system subject to linear
measurements and Gaussian noise, the quantum filter reduces
to a quantum Kalman filter (QKF) [59]. In this direction, [60]
has presented a Quantum algorithm to perform the extended
kalman filtering, where a commutative approximation and
a time-varying linearization to non-commutative quantum
stochastic differential equations (QSDEs). Therefore using
quantum extended kalman filtering (QEKF) for power system
dynamic states estimation can be explored for future research.

3) OBSERVABILITY ANALYSIS

The aim of observability analysis is to check whether enough
measurements are available to perform states estimation
calculation and in case of unobservability, to find which
section of grid states can be estimated with available
measurements. The observability analysis can be performed
offline, for planning of meter placement while expansion
of grid, or performed online during operation, because of
changing topology or loss of communication network can
lead to unobservable grid. This may necessitate execution of
observability analysis multiple times during the operation.

For static state estimation, the outcome of observability
analysis is binary and there are broadly two categories of
methods to perform this analysis, they are the topological
observability analysis and numerical observability analy-
sis [61]. The topographical observability analysis is based on
representing the grid in a graph-based formulation, with buses
representing graph nodes and lines represented by the graph
edges. One of the algorithm to find observability using this
graph-based representation is called Nucera’s algorithm and
does not involve any mathematical computation. Nucera’s
algorithm follows a set of assumptions and specific rules
to find the whether the grid is observable and/or to find
observable islands of the grid. The challenge with this
method is that with increasing size of the grid, the problem
becomes increasingly complex and not intuitive. Quantum
computing algorithms are considered for several problems
in graph theory. Reference [62] lists Quantum algorithms
to perform graph-based algorithms. Therefore, Quantum-
enabled algorithm for topological observability problem may
be a possible research direction for further investigation.
The numerical observability analysis involves observing the
non-singularity of the Gain matrix and whether Jacobian has
a full-rank, satisfying which indicates the full observability.
To identify the unobserved islands, the numerical method
makes use of solution to linearized WLS equation.

For dynamic state estimation, the grid observability results
in outcome indicating whether the grid is strongly or weakly
observable. Due to the non-linearity and time-varying nature
of the problem, the methods based on lie-derivative [57] needs
to be used in every time step of the dynamic estimation,
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which can be computationally demanding. Here, the Author’s
foresees the possibility of using quantum algorithms such
as HHL or VQLS the numerical observability analysis as a
direction for further investigation.

4) METER PLACEMENT PROBLEM

The meter placement problem aims at two challenges, first
to improve the grid visibility and second to reduce the
estimation errors. However, due to the large number of nodes
in distribution networks, it is not economically possible to
install meters in all nodes, and therefore necessitates devel-
opment of routines to investigate optimal meter placement
to overcome specific challenges [63]. This is generally an
offline procedure during planning stages to assess optimal
location for placement of measuring device in order to
obtain complete visibility of the grid and/or improve the
accuracy of the state estimation. In [64], through Quantum
optimization technique an assessment is performed on the
computational viability of the current generation D-Wave
Systems 2000Q Quantum Annealer (QA) for this power
systems design problem. The analysis suggested that the QC
might outperform well-developed conventional optimization
methods in this application; however, limitations in hardware
and noise for large and densely linked graphs need to be
addressed first.

B. GRID SECURITY ASSESSMENT

Evaluation of power system security is necessary in order
to develop ways to maintain system operation to ensure
continuation of supply of electricity. Power system security is
the ability of power system to operate successfully in an unex-
pected event such as failure or loss of a component. Security is
generally evaluated by considering the probable components
failure based on reliability analysis and analyzing the effect
of loss of such components on the operating conditions
of the grid via contingency analysis. Further, modern day
power system is heavily reliable and interdependent with the
information and communication technology (ICT) network,
owing to its important role in transitioning traditional grid
to smart grid. As much as the ICT network empowers
digitization and smart operation of the grid, it also exposes
our grid to the threats which are cyber in nature. A cyber-
attack to the ICT infrastructure of the grid can cascade
and propagate to the process operation level, and has the
potential to interfere with the operation of the grid. Therefore,
in today’s grid, the power system security assessment should
involve assessment on reliability of physical equipment and
device, effect on operation of the grid in the event of loss of
an power equipment and also security of the ICT network.

1) CONTINGENCY ANALYSIS

A contingency is the failure or loss of an element (e.g. gener-
ator, transformer, transmission line.), or a change of state of
a device (e.g. the unplanned opening of a circuit breaker in a
substation) in the power system [65]. Therefore contingency
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analysis is an application that uses a computer simulation to
evaluate the effects of removing individual elements from
a power system. Current electric utility operating policies
(such as NERC’s) require that each utility’s power system
must be able to withstand and recover from any ‘“first
contingency”’ or any single failure at every operational
state of the grid [65]. However, in future the policies may
require the utilities to test and withstand for the second
contingency, which would then lead to a higher number
of contingencies to be tested for a given size of grid.
Contingency analysis is run also online. Whenever the state
of the grid changes, the contingency analysis is run to
check for security against first contingencies. As such one
may anticipate, the contingency analysis problem scales
with the size of the grid and the level up to which the
contingency assessment is to be performed. Basically, the
contingency analysis runs potentially thousands of power
flow, each considering a different contingency, and assessing
the system’s condition due to each contingency. Recently,
Quantum computing solution for DC and fast decoupled
method of AC power flow solution has been investigated
in [66], [67], and [68]. The approaches make use of HHL
algorithm for solving system of linear equations to solve
the power flow problem. Reference [69] introduces Quantum
algorithm for the contingency analysis problem, where the
HHL method is reformulated such that the method can be
applicable for AC power flow problems. In [70], authors
present experimental results of AC power flow using HHL
algorithm on real noisy intermediate-scale quantum computer
(NISQ). The paper examine the impact of current noisy
quantum hardware on the accuracy and speed of an AC
power flow algorithm. The paper concludes that the current
hardware is capable of performing a power flow for small test
systems, but scalability is currently a major issue which needs
further improvement.

2) CYBER SECURITY

Cyber security in power grid is an extensive and important
area of research owing to the capability of cyber attacks to
disrupt operation of electrical grid and thereby impacting
nation’s security and economy. While Quantum computing
presents promising advantages in terms of computational
efficiency and speed, these strengths pose as a challenge to
the security of grid communication network. The security
of public-key cryptographic systems heavily relies on the
computational difficulty of specific mathematical problems
such as discrete logarithm and factoring problems [12].
However, in the age of improving Quantum technology,
as reported in [71], the Quantum-enabled attacks unleashes
exploitation of new security vulnerabilities. For instance,
the security of RSA (Rivest-Shamir-Adleman) is threatened
by the Shor algorithm that can efficiently calculate prime
factorization using Quantum computing, and on the other
hand for symmetric encryptions, the brute-force attacks
is made possible with increasing computational speed of
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quantum computers. This poses a challenge to the security
of data exchanged over communication network amongst
various stakeholders in the smart grid involving integration
of Distributed Energy Resources (DER). In this regard, [71]
presents investigation on defense strategies using quantum
key distribution (QKD) and post-quantum cryptography
(PQO). In [72], QKD is used to authenticate smart grid
communications, and is further demonstrated on electric
utility’s fiber network. Studies in [73], [74], [75], and
[76] investigates application of QKD for enabling security
in microgrids and networked microgrids. To overcome
challenges, such as point-to-point and distance limitation
issue [77] which hinder wide implementation of QKD for
power grids, authors of [78] present Quantum networks
as a possible solution. In addition to QKD, quantum
direct communication (QDC) is another form of quantum
communication, where confidential information is directly
transmitted over Quantum channel. Reference [79] utilizes a
quantum-direct communication (QDC) approach to provide
very high secured communication for resiliency improvement
of power grid. To address the cyber-security challenges in
case of microgrid distributed control, [80] and [81] presents a
quantum distributed control framework to enable controlling
networks of DERs through a network of quantum systems.

3) RELIABILITY ASSESSMENT

The reliability of a system is the probability with which
the system will perform its required function under given
conditions for a specified period of time. The reliability
assessment makes use of failure rates and outage data of
various components in the grid to assess the overall reliability
of the power grid. Monte-carlo (MC) method is used as a
simulation method for reliability assessment, where failure
probability of elements of the system is estimated using
the probability distribution histogram from Monte Carlo
simulation. In MC method, first, the uncertain parameters
are modeled as random variables with a given uncertainty
distribution, then random samples are generated for each
random variable using respective probability distribution
function, and finally the expected value for each random
value is calculated. The accuracy of MC method mainly
depends on the number and quality of sampling. For a
large-scale system, the required number of sampling is very
large, which makes the method computationally challenging.
Recently in [82] and [83] Quantum-enabled methods for MC
simulation for reliability assessment have been proposed.
Quantum amplitude estimation (QAE) has been used in [82]
to execute the quantum circuit containing the probability
distribution loading block for random variables total-time to
failure (TTF) and total-time to repair (TTR), quantum MC
simulation (QMCS) block, estimation of required functions
of random variables, and measuring units. The results indicate
that the quantum MC simulation algorithm needed a small
number of qubits to produce the same results as compared to
the classical MC simulation method in which the sampling
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size is an important factor in the convergence rate of the
method.

C. OPTIMIZATION FOR GRID APPLICATION

The planning and scheduling tasks in power system are
generally formulated as an optimization problem, whose
objectives can range from loss minimization, to generation
cost minimization or maximization of revenue from elec-
tricity generation. The traditional planning and scheduling
optimization problem are combinatorial in nature and are
often NP-hard. The use of quantum optimization is expected
to achieve a super-polynomial advantage for complicated
combinatorial optimization problems [77]. Currently avail-
able quantum optimization algorithms can already solve
problems formulated as quadratic unconstrained binary
optimization (QUBO) problems. One of the first quantum
optimization algorithms is the Quantum Approximate Opti-
mization Algorithm (QAOA).

In literature, Quantum-enabled formulations of unit com-
mitment (UC) problem is widely investigated [84], [85], [86],
[87], [88]. The unit commitment is used to determine the
start-up and shut-down schedule of all production units so
that the electric demand is supplied and the total operating
cost is minimized, at the same time meeting a number
of system and generator constraints. The UC problem is
generally formulated as a large-scale mixed integer nonlinear
problem and involves nonlinear cost function and the feasible
solutions are combinatorial in nature [84]. In studies [85],
[86], [87], [88], different Quantum-enabled approaches to
the unit commitment problem is formulated using QAOA.
To fit the requirement of QAOA, [85], [86] translate the
UC model into sub-problems, where the binary variables
(commitment status of generators) are formulated by QUBO
sub-problems, and the sub-problems are coordinated using
the alternating direction method of multipliers (ADMM) [77].
In [84] the mixed-integer quadratic programming (MIQP)
UC problem, is reformulated as a QUBO problem and
solved using a D-wave quantum Annealer (QA). Beside
ADMM, there is another decomposition called Benders
decomposition which is very effective for solving the mixed
integer optimization problems, where the whole optimization
problem is decomposed in to a Master problem which is
entirely integer-problem and a set of sub problems which
are continuous optimization problems. In the recent years
classical-quantum hybrid Benders decomposition [89], [90]
approach has been developed to solve generic Mixed-integer-
Linear programming (MILP) [91] and also UC problems [92]
where the Integer programming part is solved with QAOA or
D-wave and the continuous optimization part is solved with
a standard classical solver. Apart from the decomposition
approach a novel method called Bayesian optimization (BO)
which is very efficient for optimizing complicated black-box
reward functions. Recently BO method has been applied for
data-driven unit commitment problems [93]. As an extension
of classical BO, a quantum version of Bayesian optimization
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method [94], [95] using quantum kernels has been developed
to solve some real-world optimization problems.

Once the commitment of each generating unit is decided
by the UC, the next step is to determine, for each hour of the
planning horizon, the actual power output of each of the com-
mitted generating units that is needed to supply the demand
and to comply with the set operational equality and inequality
constraints. This is the economic power dispatch problem,
where the total generation costs are optimized. To address this
problem, [96] proposes Quantum-behaved particle swarm
optimization (QPSO) with Cauchy distribution. The paper
presents results of QPSO on 15 generation unit network and
compares the outcomes with QPSO with Cauchy distribution.

Some other notable applications with optimization prob-
lem in distribution grids are:

o Volt/Var control - to find optimal settings of control
variables, such as generator voltages, transformer taps
and shunt VAR compensation devices for effective
voltage and reactive power control. References [97]
and [98] propose use of quantum genetic algorithm
(QGA) to address this problem to solve for optimal
control variable set points.

« Facility location-allocation - to find optimal place for
installation of generation facilities in order to minimize
capital and operational costs. Reference [84] presents
approaches using VQE on IBM Quantum system and
QA on D-Wave 2000Q system for addressing this
problem.

o Grid partitioning - to optimally partition the grid for
easier analysis and operation of larger networks. Refer-
ence [99] proposes application of quantum annealing for
complex network theory based graph partitioning using
electrical modularity.

« Service restoration

« Optimal power flow for minimizing losses

« Redispatch for congestion management

« Optimal meter placement problem

D. FORECASTING
Forecasting methods are used extensively in the DER
integrated modern grids, with applications ranging from load
forecasting, DER generation forecasting, weather forecasting
and energy price forecasting for market functions. Machine
learning techniques are widely used for forecasting and
prediction problems. Classically, machine learning involves
significant computational burden and its performance heavily
depends on the choice of learning models. Since quantum
states can be efficiently operated in the Hilbert space
and are capable of representing entangled correlations,
Quantum Machine Learning is promisingly powerful for
data processing and model training in ultra-high dimensional
space that are intractable for classical algorithms [77].
References [100], [101], and [102] reports and investigates
Quantum machine learning based forecasting applications for
power system.

VOLUME 12, 2024



P. A. Ganeshamurthy et al.: Next Generation Power System Planning and Operation

IEEE Access

1) WEATHER, GENERATION AND LOAD FORECASTING

The need for weather, generation and load forecasts are
increasing for efficient and safe grid operations in renewable
dominated power networks. In [100], a quantum counterpart
of the support vector algorithm (QSVA) is proposed that can
be used to forecast solar irradiation, whereas [101] presents
Quantum Generalized Neural Network (QGNN) method
for forecasting of solar photovoltaic system power output,
wherein QC was implemented with the genetic algorithm to
optimize the algorithm during the training process. In [102]
a wind power prediction method based on the combination
of quantum genetic algorithm and fuzzy neural network is
presented to predict the wind power of wind farm in the short
term.

For the application of electric load forecasting, [103]
presents a hybrid electric load forecasting technique using a
support vector regression (SVR) algorithm, in which the QC
mechanism is integrated with SVR to improve the forecasting
accuracy. In this paper, quantum computing mechanism is
used to quantamize dragonfly behaviors to enhance the
searching effectiveness of the dragonfly algorithm, namely
(QDA). Similarly, numerous preliminary trials have been
proposed, in which Quantum computing mechanism and
meta-heuristic algorithms are hybridized with an SVR model,
such as the quantum PSO (QPSO) algorithm with SVR [104],
[105], the quantum bat algorithm (QBAT) with SVR [106].

2) ELECTRICITY PRICING

Quantum systems could also play a vital role to optimize
energy procurement, trading, and hedging, to better anticipate
prices and power demand. For the purpose of electricity price
forecasting, [107] utilizes quantum immune optimization
algorithm (QIOA) and a modified back propagation neural
network (BPNN) price prediction method. The proposed
algorithm is studied on a realistic New Zealand power com-
pany, where the numerical results suggest higher prediction
accuracy of proposed quantum immune optimization BP
algorithm, compared to the traditional BPNN.

3) PREDICTIVE MAINTENANCE

Another prediction based application investigated for benefit-
ing the advantages of quantum computation is the predictive
maintenance of gas power plants in [108]. Predictive
maintenance method determine the condition of in-service
equipment and estimate when maintenance of the monitored
equipment should be performed. In [108], a hybrid classical-
quantum Autoencoder (HAE) model that performs anomaly
detection for predictive maintenance is presented. The
HAE is composed of a classical encoder, a parameterized
quantum circuit and a classical decoder. The results indicate
higher precision of the proposed approach over its classical
counterpart.

E. GRID STABILITY ANALYSIS
Power system stability is broadly defined as that property
of a power system that enables it to remain in a state of
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operating equilibrium under normal operating conditions
and to regain an acceptable state of equilibrium after being
subjected to disturbance [109]. In many cases, instability
and eventual loss of synchronism are initiated by some
disturbance in the system resulting in oscillatory behavior
that, if not damped, may eventually build up [110]. Further,
with converter based resources integrated into the grid, the
grid has lower inertia owing to less damped system and higher
frequency oscillations.

1) SMALL SIGNAL STABILITY ANALYSIS

Generally, the small signal and large signal stability analysis
are performed to analyze ability of the system to maintain
synchronism under small disturbance and large disturbances
respectively. In small signal analysis, the ability of the system
to maintain synchronism under small disturbances, such as
load changes, are studied. The widely used method for
small-signal stability analysis is known as the modal analysis.
In this method, the system is linearized around an operating
point and the eigen values of the system are computed and
analyzed to understand the oscillatory modes available under
small disturbances, which dictates the small signal stability
characteristics of a system. To compute eigen values of a
matrix on a quantum computer, [111] proposes algorithms by
combining quantum linear solver (QLS), quantum singular
value estimation (QSVE) and quantum phase estimation
(QPE). The proposed quantum algorithms are applicable for
diagonalizable normal matrices and diagonalizable matrices
whose eigenvalues have non-positive imaginary parts. How-
ever, the applicability of this approach for specific case of
power system modal-analysis is pending to be investigated.

2) LARGE SIGNAL STABILITY ANALYSIS

In case of transient stability analysis, comparatively severe
disturbances, such as faults, are applied and time domain
simulations are performed to analyze system’s stability under
these disturbances. The classical transient stability analysis
is based on numerical integration methods for performing
time-domain simulation, which can be time consuming with
increase in grid size. For simulation and analysis of electro-
magnetic, electromechanical transients, the Electromagnetic
Transient Program (EMTP) is a widely used tool [112]. At the
core of the EMTP lies the problem complexity of numerical
integration, which is solved by applying the trapezoidal
discretization at each time step to transform the dynamic
equations of a power network into numerical equations of an
equivalent resistance network. The computational burden of
this problem scales polynomially with the size of the grid.
To address this challenge, [113] proposes a Quantum-enabled
EMTP algorithm, which essentially uses HHL algorithm
to solve the Quantum Linear System Problem. Due to the
complexity of Quantum circuits used in the HHL based
algorithm of [113], the method may not be executed correctly
on presents day NISQ machine owing to noise, and therefore
making this approach suitable for noise-free ideal quantum
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machines. Further [114] develops a VQLS-enabled QEMTP systemic states of DFIG. The Authors refer to the proposed
algorithm which is practical and noise-resilient approach for approach as a quantum deep reinforcement learning (QDRL).
EMTP analysis for presently available NISQ devices [77]. From this literature survey the authors have determined

Data-driven methods provide an alternative path where that the following power system applications lack a quantum
offline-trained neural networks are used to establish stability proof-of-concept in the literature but have the potential to
regions [115] and post disturbance conditions are compared benefit from quantum computation.

to determine stability of the system post disturbance. This .
approach is used in [116], where the transient stability fea-

tures are embedded into quantum states through a variational
quantum circuits (VQC) which serves as Quantum neural
networks (QNN). The method is tested on both Quantum
simulator and real IBM Quantum device.

3) FAULT MANAGEMENT

In an event of a fault, the fault management functions such
as fault detection, fault isolation and service restoration are
critical in ensuring grid stability and continuity of supply.
In this direction, [117] presents Quantum computing-based
deep learning framework for fault diagnosis, where the
computational challenges due to the complexities of deep
learning models are overcome by QC-based training.

F. GRID CONTROL

Controllers such as proportional-integral (PI) and proportional-
integral-derivative (PID) are used widely for various control
applications. One such application is the load-frequency o
control to maintain power balance, for which secondary
controllers are introduced to regulate the power system
parameters within a specified limit during sudden load
demand period. For better controlled response under load
variations, a suitable controller gain value selection is
considered essential. Several optimization techniques are
implemented to optimize the secondary controller gain
values. The existing techniques for controller gain selection .
would be significantly challenging in large and complex
power systems due to non-linearity. To address this
challenge, Quantum -enabled algorithms for application of
tuning controller gains are investigated in the literature.
In [118] Genetic Algorithm (GA), Quantum Inspired Genetic
Algorithm (QIGA) and Quantum Inspired Evolutionary
Algorithm (QIEA) are proposed for tuning of controller gain
values of a three area single stage reheat thermal power
systems.

For the purpose of rotor control in doubly-fed induc-
tion generator (DFIG), [119] proposes a quantum parallel
multi-layer Monte Carlo optimization algorithm (QPMM-
COA) to achieve maximum power and improved generation .
efficiency by optimizing the PI controller parameters of
the rotor-side converters. For similar application, however
to avoid online optimization process and update control
strategy online, [120] proposes an an online control algorithm
based on the quantum process, deep belief networks, and
reinforcement learning. The proposed method can update the
control strategy online with general initialization for dynamic
systems, avoid optimal local solutions, and predict the next
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Dynamic state estimation - As highlighted in Sec-
tion IV-A2, DSE can be useful in providing dynamic grid
situational awareness to the operator for converter driven
grids, however it suffers from computational burden due
to the need for faster execution of costly computations,
frequency of execution and size of the grid. Therefore
DSE can be foreseen to benefit from quantum algorithms
such as HHL, however a proof-of-concept for DSE for
power system monitoring needs to be developed and
tested for a reasonable grid size.

« Dynamic observability analysis: The dynamic observ-

ability of the grid can vary at different times due
to non-linearity and time variant nature of the power
system. Due to this, the observability analysis needs
to be executed frequently, using methods such as Lie
derivatives. The computational load of these methods is
affected by size of grid, number of measurements and the
frequency of observability analysis execution. As high-
lighted in Section IV-A3, potential quantum algorithms
can be investigated and tested for observability analysis.
Small signal stability analysis - The computational
demand in modal analysis can arise from the size of the
matrix and number of operating points for which the
small signal stability needs to be tested. As mentioned
in Section IV-El, modal analysis can benefit from
quantum methods to identify the eigenvalues of a
matrix, however further research in this direction is
required.

Service restoration - The goal of any service restoration
algorithm is to ensure that all loads are supplied with
power after an event of failure and isolation of faulty
section. In doing so, the algorithm needs to solve a
constrained and combinatorial optimization algorithm
to arrive at an optimum way in which the electricity
supply for non-faulty section is restored. Therefore,
the computational burden of this algorithm is directly
affected by the grid and component size, as well as
by the requirement to be executed in a timely manner
for ensuring minimum operational losses. The Authors
foresee the use of quantum optimization algorithms in
aiding speed in service restoration algorithms.
Re-dispatch for congestion management - Similar to ser-
vice restoration algorithms, the congestion management
algorithms have to solve a constrained optimization
problem for ensuring optimum set-points for generat-
ing units and network configuration for reducing the
congestion in grid. Here as well the execution of such
algorithms face computational challenge due to the size
of grid and components, which increase number of
combinations.
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« Energy data analytics - The field of big data, statistical
software and machine learning (ML) techniques is
gaining traction for use in energy data analytics for
not only improving grid efficiency but also to improve
service to customers. However these algorithms suffers
from processing load due to huge volume of data and
complexity in problem formulation. Apart from those
presented in Section IV-D, several other applications
such as demand response, load management, asset
management and customer analytics can be foreseen to
benefit from quantum computation advantages.

G. CHALLENGES TO EXPLOIT FULL POTENTIAL OF
QUANTUM COMPUTATION FOR POWER SYSTEM
APPLICATIONS
Although quantum computers have a potential to outperform
the classical computers for various computational problems,
there are several challenges which limit exploitation of full
quantum potential.
o Stability of Qubits
One of the primary challenges on the quantum hardware
side is qubits are not very stable. A small external
influence like temperature fluctuation or exposure to
radiation can corrupt a quantum state. Efficient quantum
computing highly depends on the superposition or
entanglement between multiple qubits, therefore one
errored qubit can badly affect the computation or the
solution quality.
o Bottleneck of error correction protocol
An efficient error correction protocol needs mil-
lions of high-quality qubits. In the current noisy
intermediate-scale (NISQ) era, quantum computers have
qubit-limitation for implementing the error correction
protocols, making most of the quantum algorithms
unsuitable for near-term devices.
o Lack of Fault tolerant algorithms
Most of the popular quantum algorithms, e.g.,
Shor’s [12] or Grover’s [11] algorithms, require fault-
tolerance, which is currently not available with state-of-
the-art technology.
o Scalability of quantum algorithm validation:
Validation of most of the quantum solutions for grid
applications are limited to a small grid size due to
limitations in quantum resources, since a large quantum
resources (in terms of qubits and circuit depth) are
required for computation of bigger grids. The research
so-far is limited to only 3-4 node systems. For example,
a simple DC power flow problem executed using HHL,
where the number of quantum gates grows enormously
as the system size grows, which is beyond the scope of
current hardware resources.
o lll-conditioned Matrix:
This is a power system specific challenge, where usually
solving linear system of equations or matrix inversion
is involved. These matrices involved in some power
system applications (such as Jacobian matrix in power

VOLUME 12, 2024

flow or state estimation) may be ill-conditioned. The
quantum algorithms with these ill-conditioned matrices
require large gate-depths and circuit size to process
matrices with poor condition number. To overcome this,
preconditioning of matrices or heavy quantum resources
may be required.

o Efficient quantum memory or data encoding procedure:
In the current status of quantum hardware, there are
few limitations on quantum memory for efficiently
encoding data. Quantum memory like qRAM is very
hard to experimentally construct. The other approach is
to directly prepare the quantum state through quantum
gates, wherein the circuit depth or circuit width grows
rapidly with the size of the data. On the other hand other
approaches such as qGAN have low circuit depth or
width, however they are only approximate encoding and
suffer from information encoding accuracy.

o Lack of personnel with specific skill-set: Quantum
algorithms for power system applications is a multi-
disciplinary topic. Lack of personnel with this spe-
cialized skill-set makes improving and implementing
reliable quantum algorithms challenging for critical
power system applications.

Further research directions can include (but not limited to)
addressing the above challenges for enabling full quantum
potential exploitation. Table 3 provides overview of reviewed
power system applications, quantum approaches and poten-
tial quantum readiness, giving an indication of whether the
corresponding algorithm is NISQ friendly or not.

1) POTENTIAL SOLUTIONS TO THE ABOVE CHALLENGES

For reducing the effect of corrupted qubits efficient error
correction protocol can be applied. However efficient error
correction methods require several thousands of qubits,
which can be be achieved with improvement to quantum
hardware capabilities. Although due to the absence of
efficient error correction or fault-tolerance, the practical
quantum advantage is currently a roadblock, but to obtain
some meaningful result from these NISQ devices, often
various error mitigation and circuit optimization techniques
are implemented. Mapomatic [121], which finds out the best
qubit mapping for a specific device is often used to reduce
the gate error in a specific quantum device for a particular
quantum circuit. Use of dynamical decoupling [122] to
reduce the qubit decoherence and use of mthree error
mitigation technique [123] for correcting the measurement
errors are commonly adapted. Besides the above examples the
popular error mitigation and circuit optimization techniques
include Pauli Twirling [124], Probabilistic Error Cancellation
(PEC) [125], Approximate Quantum compiling (AQC) [126]
etc. Application-specific adaptations, such as conditioning
the ill-conditioned Jacobian matrix for power flow com-
putations, can significantly contribute to reducing circuit
depth in quantum algorithms. Moreover, thorough validation
of the developed quantum algorithms on representative
grid topologies and system sizes is critical to ensure their
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TABLE 3. Quantum computing for grid applications.

Power System Application References Target Quantum Potential
Sub-Category Problem Solution Q readiness
Static States Estimation [55] solve LSE in WLS Gauss-Newton iterations HHL No
Dynamic States Estimation ~ [60]", [59]" kalman filters QSDE+QEKF/QKF No
Observability Analysis [62] - - -
Meter Placement [64] combinatorial optimization QA Yes
Power flow [66], [68], [70] solve LSE in power flow problem HHL No
Contingency Analysis [69] solve LSE in power flow problem HHL No
Cyber Security [71], [73], [74],

[751, [76], [78], [79], [72] secure communication QKD, PQC, QDC -
Reliability Analysis [82] Monte-carlo simulation QAE + QMCS No
Unit commitment [841, [85], [861, [871, [88] optimization QAOA, QA Yes
Economic power dispatch [96] optimization QPSO No
Facility location allocation [84] optimization VQE, QA Yes
Volt/Var control [97], [98] optimization QGA No
Grid partitioning [99] optimization QA Yes
Weather forecast [100] - QSVA No
Generation forecast [101], [102] training NN QGNN, QGA Yes
Load forecast [103], [104], [105], [106] optimize SVR parameter QPSO, QBAT, QDA No
Electricity price forecast [107] optimize BPNN search space QIOA No
Predictive maintenance [108] processing data for NN HAE Yes
Small signal Analysis (1117 Eigenvalue solver QLS-HHL, QPE, QSVE No
Transient Analysis [116] data-driven transient stability prediction VQC as QNN Yes
EMTP [113],[114] Solve LSE to solve for nodal voltages VQLS, HHL VQLS(Yes) HHL(No)
Fault Management [117] fault diagnosis QC-based deep learning Yes
Load frequency control [118] optimize controller gain values QIGA, QIEA Yes
DFIG rotor control [119] optimize rotor side PI controller parameters QPMMCOA Yes

[120] online control strategy updating QDRL Yes

only suggestive reference suitable for the corresponding application
Here Q readiness is used to provide an indication whether or not the corresponding algorithm is NISQ friendly.

practical applicability and robustness. The development of
quantum algorithms tailored for power system applications
requires a specialized skill set that combines expertise in
both quantum computing and power systems. Initiatives
such as summer schools and introductory courses designed
to build these interdisciplinary skills can be particularly
beneficial. Sustained high-quality research is essential to
address existing challenges, enabling the development of
advanced techniques that leverage these insights to adapt
established quantum computing algorithms for power system
applications,

Quantum computing with its ability to exponentially scale
with qubits, could handle larger and more complex grids,
potentially offering better scalability. The improved speed
and efficiency in processing complex grid problems can lead
to significant reductions in computational costs, potentially
lowering business expenses. However, the high cost of
accessing and maintaining quantum computers must also
be factored in. Traditional computing, though more acces-
sible and widely deployed, struggles with scalability and
efficiency for large-scale, complex problems. Ultimately, the
cost-effectiveness comparison and the selection of computing
resources depends on the specific application, with quantum
computing potentially offering significant benefits for certain
optimization and data-intensive tasks in the future.

V. CONCLUSION
The planning and operation of the modern power system
has become increasingly complex, driven by the need for
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real-time monitoring, dynamic security analysis, increased
size of grid active components, stochastic power flow
calculations, large-scale data analytics, and high-dimensional
combinatorial and constrained optimization, to name a few,
which has led to high computational complexity of the
power system applications. In recent years, the use of
quantum quantum algorithms for power system applications
have gained traction due to both increasing complexity
and computational demand of the applications as well as
advancements in quantum technology, offering a promising
solution to alleviate the computational burdens. However
the research in this direction is still in nascent stages.
This paper serves as a primer for power engineers to the
quantum domain by outlining essential quantum computation
principles, key quantum algorithms and comparison of
classical and quantum computational load for certain key
mathematical problems. This paper serves as a primer
for the reader by emphasizing the importance of research
on quantum solutions for power system application and
providing a comprehensive review on existing state-of-the art
quantum algorithms for various power system applications,
thus facilitating a smoother transition for power system
engineers into the quantum computing realm. Additionally,
this work offers quantum computing experts insights into new
and emerging application domains within power systems,
encouraging further exploration and development of special-
ized quantum algorithms for power grid management. While
quantum computing offers promising results, there are still
several challenges that need to be addressed. In this direction
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the paper highlights the challenges in exploiting full quantum
potential, particularly in the context of real-world power
system applications, the limitations in quantum hardware,
algorithm scalability, and noise reduction remain critical
challenges to overcome. The paper further provides an
indication on quantum readiness level of the reviewed
power system applications. Furthermore, applications are
identified which can benefit from quantum computation.
In conclusion, the cross-disciplinary research of quantum
computing for power system computing problems represents
a revolutionary frontier for the future of power system
applications for planning and operation. Future research
should focus on developing scalable quantum algorithms
tailored to specific power system problems, addressing
challenges related to quantum hardware limitations, and
exploring hybrid quantum-classical approaches to maximize
the benefits of quantum technologies. As the field of quantum
computing continues to mature, the synergy between quan-
tum computing and power system applications will likely
play a pivotal role in enabling more resilient, efficient, and
sustainable energy systems.
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